Weld: A Common Runtime for Data Analytics

Shoumik Palkar, James Thomas, Deepak Narayanan, Anil Shanbhag*, Rahul Palamuttam, Holger Pirk*, Malte Schwarzkopf*, Saman Amarasinghe*, Sam Madden*, Matei Zaharia

Stanford InfoLab, *MIT CSAIL
Motivation

Modern data apps combine many disjoint processing libraries & functions
 » SQL, statistics, machine learning, ...
 » E.g. PyData stack
Motivation

Modern data apps combine many disjoint processing libraries & functions
 » SQL, statistics, machine learning, ...
 » E.g. PyData stack

+ Great results leveraging work of 1000s of authors
– No optimization across these functions
How Bad is This Problem?

Growing gap between memory/processing makes traditional way of combining functions worse

```python
data = pandas.parse_csv(string)
filtered = pandas.dropna(data)
avg = numpy.mean(filtered)
```

Up to 30x slowdowns in NumPy, Pandas, TensorFlow, etc. compared to optimized C implementation
Optimizing Across Frameworks

SQL

machine learning

graph algorithms

Common Runtime

CPU

GPU
Optimizing Across Frameworks

- SQL
- machine learning
- graph algorithms

Weld runtime

Weld IR

Backends

Runtime API

Optimizer

CPU

GPU
Integrations

Partial Prototypes of Pandas, NumPy, TensorFlow and Apache Spark

\[y_{it} = \beta'x_{it} + \mu_i + \epsilon_{it} \]
Existing Libraries + Weld = 30x

- TPC-H Q1: 6.8x Faster
- TPC-H Q6: 4.5x Faster
- Vector Sum: 30x Faster

Spark SQL
NumPy
TensorFlow

TPC-H
Vector Sum
Logistic Regression

Weld
Cross libraries + Weld = 290x

Pandas + NumPy

- Native
- Weld, no CLO
- Weld, CLO
- Weld, 12 core

Spark SQL UDF

- Scala UDF
- Weld

CLO = with cross library optimization
Integration Effort

Small up front cost to enable Weld integration
» 500 LoC

Easy to port over each operator
» 30 LoC each

Incrementally Deployable
» Weld-enabled ops work with native ops
Implementation

Around 12K lines of Rust
 » Fast and safe! Perfect for embedding

Parallel CPU backend using LLVM

GPU support coming soon
Weld is Open Source!

Weld
Fast parallel code generation for data analytics frameworks.

Download ZIP File Download TAR Ball View On GitHub

News
- Weld is being presented at Strata + Hadoop World in San Jose, CA!
- A short position paper describing Weld was presented at CIDR 2017!

Installation and Tutorials
- Installation Instructions
- Python API Tutorial
- Grizzly: Pandas on Weld
- Support

Motivation
Weld is a runtime for improving the performance of data-intensive applications. It optimizes across libraries and functions by expressing the core computations in libraries using a small common intermediate representation, similar to CUDA and OpenCL.

Modern analytics applications combine multiple functions from different libraries and frameworks to build complex workflows. Even though individual functions can achieve high performance in isolation, the performance of the combined workflow is often an order of magnitude below hardware limits due to extensive data movement across the functions. Weld’s take on solving this problem is to lazily build up a computation for the entire workflow, optimizing and evaluating it only when a result is needed.

weld.stanford.edu
Rest of This Talk

Runtime API: Enabling cross-library optimization

Weld IR: Enabling speedups and automatic parallelization

Grizzly: Using Weld to build a Faster Pandas
Runtime API

Uses lazy evaluation to collect work across libraries

User Application

```javascript
data = lib1.f1()
lib2.map(data,
    item => lib3.f2(item)
)
```

Weld Runtime

- IR fragments for each function
- Combined IR program
- Optimized machine code

Data in application

1101110
0111010
1101111

1101110
0111010
1101111
Weld IR

Designed to meet three goals:

1. **Generality**: support diverse workloads and nested calls

2. **Ability to express optimizations**: e.g., loop fusion, vectorization, loop tiling

3. **Explicit parallelism and targeting parallel hardware**
Weld IR: Internals

Small IR with only two main constructs.

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
 » E.g. append items to a list, compute a sum
 » Can be implemented differently on different hardware

Captures relational algebra, functional APIs like Spark, linear algebra, and composition thereof
Examples

Implement functional operators using builders

def map(data, f):
 builder = new vecbuilder[int]
 for x in data:
 merge(builder, f(x))
 result(builder)

def reduce(data, zero, func):
 builder = new merger[zero, func]
 for x in data:
 merge(builder, x)
 result(builder)
Example Optimization: Fusion

squares = map(data, x => x * x)
sum = reduce(data, 0, +)

bld1 = new vecbuilder[int]
bld2 = new merger[0, +]
for x in data:
 merge(bld1, x * x)
 merge(bld2, x)

Loops can be merged into one pass over data
“Active, agile, hard to out-run, top speed of 35 MPH”
Grizzly

A subset of Pandas integrated with Weld
 » Operators ported over including unique, filter, mask
 » Easy to port more!

Same API as native Pandas so zero changes to applications

Transparent single-core and multi-core speedups
Grizzly in action

```python
import pandas as pd

# Read dataframe from file
requests = pd.read_csv('filename.csv')

# Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

# Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000'
requests['Incident Zip'][zero_zips] = np.nan

# Display unique incident zips
print requests['Incident Zip'].unique()
```

Grizzly in action

```python
import pandas as pd, grizzly as gr

# Read dataframe from file
raw_requests = pd.read_csv('filename.txt')
requests = gr.DataFrame(raw_requests)

# Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

# Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000'
requests['Incident Zip'][zero_zips] = np.nan

# Display unique incident zips
print requests['Incident Zip'].unique().evaluate()
```

Demo
Conclusion

Changing the interface between libraries can speed up data analytics applications by 10-100x on modern hardware.

Try out Weld for yourself: weld.stanford.edu